martes, 26 de febrero de 2013

Historia del calculo diferencial


                      Cálculo diferencial
Que es?
Consiste en el estudio del cambio de las variables dependientes cuando cambian las variables independientes de las funciones o campos objetos del análisis. El principal objeto de estudio en el cálculo diferencial es la derivada. Una noción estrechamente relacionada es la de diferencial de una función.
Desde el punto de vista matemático de las funciones y la geometría, la derivada de una función en un cierto punto es una medida de la tasa en la cual una función cambia conforme un argumento se modifica. Esto es, una derivada involucra, en términos matemáticos, una tasa de cambio. Una derivada es el cálculo de las pendientes instantáneas de   en cada punto  . Esto se corresponde a las pendientes de las tangentes de la gráfica de dicha función en sus puntos (una tangente por punto); Las derivadas pueden ser utilizadas para conocer la concavidad de una función, sus intervalos de crecimiento, sus máximos y mínimos.
La inversa de una derivada se llama primitiva, antiderivada o integral indefinida.



    Surgimiento
En sus comienzos el cálculo fue desarrollado para estudiar cuatro problemas científicos y matemáticos:
  • Encontrar la tangente a una curva en un punto.
  • Encontrar el valor máximo o mínimo de una cantidad.
  • Encontrar la longitud de una curva, el área de una región y el volumen de un sólido.
  • Dada una fórmula de la distancia recorrida por un cuerpo en cualquier tiempo conocido, encontrar la velocidad y la aceleración del cuerpo en cualquier instante. Recíprocamente, dada una fórmula en la que se especifique la aceleración o la velocidad en cualquier instante, encontrar la distancia recorrida por el cuerpo en un período de tiempo conocido.




Aportadores:
·                  Gottfried Wilhelm Leibniz.
Fue un filósofo,matemático, bibliotecario y político alemán. Fue uno de los grandes pensadores de los siglos XVII y XVIII,
Leibniz estableció la resolución de los problemas para los máximos y los mínimos, así como de las tangentes, esto dentro del cálculo diferencial; dentro del cálculo integral logró la resolución del problema para hallar la curva cuya subtangente es constante. Expuso los principios del cálculo infinitesimal, resolviendo el problema de la isócrona y de algunas otras aplicaciones mecánicas, utilizando ecuaciones diferenciales.  Su mayor aportación fue el nombre de cálculo diferencial e integral, así como la invención de símbolos matemáticos para la mejor explicación del cálculo, como el signo = , así como su notación para las derivadas dx/dy, y su notación para las integrales.


               Sir Isacc Newton.
 Newton comparte con Leibnizel crédito por el desarrollo del
 cálculo integral y diferencial, que utilizó para formular sus leyes de la física. También contribuyó en otras áreas de las matemáticas, desarrollando el teorema del binomio y las fórmulas de Newton-Cotes. En la historia del cálculo hay controversia de quién fue el inventor del cálculo, si Newton o Leibniz, algunos le dan la primicia a Newton y otros a Leibniz, pero se generaliza que Newton tuvo primero las ideas y que 
Leibniz las descubrió igualmente algunos años más tarde





Definición de Derivada
Las derivadas se definen tomando el límite de la pendiente de las rectas secantes conforme se van aproximando a la recta tangente.
Es difícil hallar directamente la pendiente de la rectatangente de una función porque sólo conocemos un punto de ésta, el punto donde ha de ser tangente a la función. Por ello, aproximaremos la recta tangente por rectas secantes. Cuando tomemos el límite de las pendientes de las secantes próximas, obtendremos la pendiente de la recta tangente.
Para obtener estas pendientes, tomemos un número arbitrariamente pequeño que llamaremos hhrepresenta una pequeña variación en x, y puede ser tanto positivo como negativo. La pendiente de la recta entre los puntos   y   es
Esta expresión es un Cociente Diferencial de Newton. La derivada de f en x es el límite del valor del cociente diferencial conforme las líneas secantes se acercan más a la tangente:
Si la derivada de f existe en cada punto x, podemos definir la derivada de f como la función cuyo valor en el punto x es la derivada de f en x.
Puesto que la inmediata sustitución de h por 0 da como resultado una división por cero, calcular la derivada directamente puede ser poco intuitivo. Una técnica es simplificar el numerador de modo que la h del denominador pueda ser cancelada. Esto resulta muy sencillo con funciones polinómicas, pero para la mayoría de las funciones resulta demasiado complicado. Afortunadamente, hay reglas generales que facilitan la diferenciación de la mayoría de las funciones descritas;

Diferenciación y diferenciabilidad
La Diferenciación puede ser usada para determinar el cambio que se produce como resultado de otro cambio, si está determinada una relación matemática entre dos objetos.
Una función es diferenciable en un punto   si su derivada existe en ese punto; una función es diferenciable en un intervalo si lo es en cada punto   perteneciente al intervalo. Si una función no escontinua en f, entonces no puede ser diferenciable en f; sin embargo, aunque una función sea continua en F, puede no ser diferenciable. Es decir, toda función diferenciable en un punto F es continua en F, pero no toda función continua en F es diferenciable en F (como f(x) = |x| es continua pero no diferenciable en x = 0).


                         


Aplicaciones importantes del cálculo diferencial

  • Recta tangente a una función en un punto

La recta tangente a una función f(x) es como se ha visto el límite de las rectas secantes cuando uno de los puntos de corte de la secante con la función se hace tender hacia el otro punto de corte. También puede definirse a la recta tangente como la mejor aproximación lineal a la función en su punto de tangencia, esto es, la recta tangente es la función polinómica de primer grado que mejor aproxima a la función localmente en el punto de tangencia que consideremos.
Si conocemos la ecuación de la recta tangente Ta(x) a la función f(x) en el punto a podemos tomar Ta(x) como una aproximación razonablemente buena de f(x) en las proximidades del punto a. Esto quiere decir que si tomamos un punto a + h y lo evaluamos tanto en la función como en la recta tangente, la diferencia   será despreciable frente a h en valor absoluto si htiende a cero. Cuanto más cerca estemos del punto a tanto más precisa será nuestra aproximación de f(x).
Para una función f(x) derivable localmente en el punto a, la recta tangente a f(x) por el punto a es:
Ta(x)= f(a) + f '(a)(x-a).

  • Uso de las derivadas para realizar gráficos de funciones

Las derivadas son una útil herramienta para examinar las gráficas de funciones. En particular, los puntos en el interior de un dominio de una función de valores reales que llevan a dicha función a unextremo local tendrán una primera derivada de cero. Sin embargo, no todos los puntos críticos son extremos locales. Por ejemplo, f(x)=x³ tiene un punto crítico en x=0, pero en ese punto no hay un máximo ni un mínimo. El criterio de la primera derivada y el criterio de la segunda derivada permiten determinar si los puntos críticos son máximos, mínimos o ninguno.
En el caso de dominios multidimensionales, la función tendrá una derivada parcial de cero con respecto a cada dimensión en un extremo local. En este caso, la prueba de la segunda derivada se puede seguir utilizando para caracterizar a los puntos críticos, considerando el eigenvalor de la matriz Hessiana de las segundas derivadas parciales de la función en el punto crítico. Si todos los eigenvalores son positivos, entonces el punto es un mínimo local; si todos son negativos es un máximo local. Si hay algunos eigenvalores positivos y algunos negativos, entonces el punto crítico es un punto silla, y si no se cumple ninguno de estos casos, la prueba es no concluyente (e.g., los engeivalores son 0 y 3).
Una vez que se encuentran los extremos locales, es mucho más fácil hacerse de una burda idea de la gráfica general de la función, ya que (en el caso del dominio mono dimensional) se incrementará o decrementará uniformemente excepto en los puntos críticos, y por ello (suponiendo su continuidad) tendrá valores intermedios entre los valores en los puntos críticos de cada lado.



Generalización del cálculo diferencial

Cuando una función depende de más de una variable, se utiliza el concepto de derivada parcial. Las derivadas parciales se pueden pensar informalmente como tomar la derivada de una función con respecto a una de ellas, manteniendo las demás variables constantes. Las derivadas parciales se representan como   (en donde  ; es una 'd' redondeada conocida como 'símbolo de la derivada parcial').
El concepto de derivada puede ser extendido de forma más general. El hilo común es que la derivada en un punto sirve como una aproximación lineal a la función en dicho punto. Quizá la situación más natural es que las funciones sean diferenciables en las variedades. La derivada en un cierto punto entonces se convierte en una transformación lineal entre los correspondientes espacios tangentes y la derivada de la función se convierte en un mapeo entre los grupos tangentes.
Para diferenciar todas las funciones continuas y mucho más, se puede definir el concepto de distribución.
Para las funciones complejas de una variable compleja, la diferenciabilidad es una condición mucho más fuerte que la simple parte real e imaginaria de la función diferenciada con respecto a la parte real e imaginaria del argumento. Por ejemplo, la función   satisface lo segundo, pero no lo primero. Vea también Función holomórfica.
Vea también: diferintegral. óptimo de una función real de dos variables sujeta a restricciones
Dadas las funciones, de valor real, y ambas con dominio, el problema consiste en hallar los valores máximos o mínimos (valores extremos) de cuando se restringe a tomar valores en el conjunto.